

Geotechnical Aspects of MR&T Levee Design, Construction and Maintenance

Ronnie Smith, P.E.

Chief, Geotechnical Engineering Branch

Not an MR&T Levee

MR&T Levee

GEOTECHNICAL DESIGN AND CONSTRUCTION OF A MR&T LEVEE

- 1. 20 ft. crown with gravel surface ensures adequate levee section and access during flood.
- 2. Minimum 1V on 3.5H slopes ensure slope stability.
- 3. Levee section encompasses 1V and 6H seep line.
- 4. Landside seepage measures protect levee toe from seepage problems.
- 5. Clay embankment prevents through seepage.
- 6. Overbuild compensates for settlement.

Note: Borings were taken, lab tests performed and slope stability, seepage and settlement analyses were performed for most levees.

US Army Corps MR&T Construction Budget (MVM)

> Construction budget historically has been approximately \$15.0 million/year

MVM Budget Focuses on Seepage Control Measures

- ► Riverside Blanket/Berms
- Landside Berms
- > Relief Wells
- ➤ Cutoff Walls (Slurry Trenches)

Underseepage

RIVERSIDE LANDSIDE

Groundwater Pressure Produces Sandboils

Underseepage

RIVERSIDE

Loss of Foundation
Sands = Levee Breach

LANDSIDE

Progressive Failure of Embankment Causes Breach

One Corps Serving the Armed Forces and the Nation

Observation During Flood Events

Historic MR&T Construction Information

- ➤ Length of MR&T Levee Approx. 630 miles
- ➤ MR&T Levee Miles Studied Approx. 425 miles
- ➤ Seepage Measures Constructed Approx. 310 miles
 - ► 1 Mile of Riverside Blanket
 - >275 Miles of Landside Berms
 - >22 miles of Relief Wells (775 wells)
 - ► 12 Miles of Slurry Trenches

Riverside Berms

RIVERSIDE LANDSIDE

Riverside Berms Fill Existing Borrow Pits and Reduce Seepage Quantities

Landside Berms

RIVERSIDE LANDSIDE

Relief Wells

RIVERSIDE LANDSIDE

Pecan Point, AR - Relief Wells

Cutoff Walls / Slurry Trenches

RIVERSIDE LANDSIDE

Cutoff Wall reduces the quantity of seepage through the aquifer

Tertiary Formation

Maintenance

- > Local Levee Districts perform minor maintenance
- Memphis District performs major maintenance
- Memphis District Maintenance Budget (Approx. \$4.5 mil/yr)
 - ➤ Monitor levees through robust annual routine inspections
 - ➤ Monitor levee profiles (Approx. 10 Year Intervals)
 - Ensure maintenance during floods
 - ► Inspect and rehabilitate relief wells
 - ► Slope Stabilization

Maintenance Projects

- ➤ Slope Stabilization
 - ➤ Slope Flattening
 - ► Lime Treatment
 - ► Lime/Fly-ash Injection
 - ► Gravel trenches
 - ➤ Geogrid Reinforcement
 - **Erosion Protection**

Slope Flattening

Lime Stabilization

Lime mixed with the soil strengthens the soil

Lime Stabilization

Lime/Fly-Ash Injection

Lime/Fly-Ash Slurry fills voids and reacts with Clay minerals

5' Center Spacing (Primary & Secondary)
10-15' Deep Injection Depths

Lime/Fly-Ash Injection

Lime/Fly-Ash Injection

Gravel Trenches

Goal: Increase average strength of embankment

Gravel Trenches

Geogrid Reinforcement

Strain in slope mobilizes 20% to 30% of Geogrid Tensile Strength

Levee Slide Repair

Geogrid Reinforcement

Erosion Protection

Erosion Protection

US Army Corps Levee Safety Program Issues

- > Impacts of Trees/Vegetation on Levee Stability
- > Seismic Stability of Levee
 - ➤ New Madrid Earthquake Zone
 - ➤ Draft ETL 1110-2-570 on Levee Certification, requires seismic stability analysis of a levee where PGA is greater than 0.15g
 - > Seismic analysis includes liquefaction analysis, slope stability analysis, and deformation analysis
 - Capability to repair earthquake damaged levees prior to next flood event will be taken into account in the levee system certification process
- > I-Wall Stability

